If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+9x=49
We move all terms to the left:
3x^2+9x-(49)=0
a = 3; b = 9; c = -49;
Δ = b2-4ac
Δ = 92-4·3·(-49)
Δ = 669
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{669}}{2*3}=\frac{-9-\sqrt{669}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{669}}{2*3}=\frac{-9+\sqrt{669}}{6} $
| 8k+4=10+7k | | 5+8x=30 | | 100=x5 | | -2-10b-2=1-9b | | 3(5x+4)=25x−8 | | -7-4R=7-6r | | 1.402.234+c=1.932.322 | | 7-4t=-3t | | 5+8x3x=30 | | 5z+9z-10=10z+10 | | -2-7t=-6t+8 | | 3y-14=92 | | -10-r=5+2r | | 3x+30°=4× | | -6v=-4v-8 | | (4x-3)+(8x+9)=180 | | 2x-12=x+44 | | 90/4=10/x | | 3-4p=9-3p | | 18x-9=-3x+2 | | 8k=-4+7k | | 29+(8x-14)+29=180 | | x+2=2x-2÷3 | | x^2+(4/3x)^2=-63 | | 12=t. | | (3x-7)+(4x+19)=115 | | z/9-9=1= | | 7v/4=-21 | | 2512=−314+k | | 7x+5+3x+8=63 | | (x+27)+(x+27)=(5x+3) | | r^2+30r+200=0 |